

Set theory Miscellany

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 20 December, 2022 (at 12:22)

ABSTRACT: A NaPo conundrum. Meir's Finite intersection problem. Pre-image problem.

Unfinished: Ordinal arithmetic. Cardinal arithmetic. Not yet: Hercules and the Hydra.

Notation. Two sets P and Q are *equinumerous*, or “*bijective* with each other”, if *there exists* a bijection $P \hookrightarrow Q$. [BTWay, we use a hook-arrow to indicate an *injection*, e.g, $P \hookrightarrow Q$, and a doublehead-arrow, e.g $P \rightarrowtail Q$ to indicate a *surjection*. Hence \hookrightarrow indicates a bijection.] Write the *equinumerous* relation as

$$P \asymp Q.$$

Write $P \preccurlyeq Q$ if *there exists* an injection $P \hookrightarrow Q$. Finally, let $P \prec Q$ mean that $P \preccurlyeq Q$ yet $P \not\asymp Q$.

Easily, \asymp is an equivalence relation. [On the class of cardinalities, relation \preccurlyeq is a pre-order. Is \preccurlyeq a *partial-order*? Is \preccurlyeq a *total-order*?]

Call S *countably-infinite* or *denumerable* if $S \asymp \mathbb{N}$. Set S is *countable* if $S \preccurlyeq \mathbb{N}$, i.e, S is bijective with some subset of \mathbb{N} . [So a countable set is either *finite* or *countably-infinite*.]

Problem V4 from a NaPo exam

Below, A, P, Q are arbitrary sets.

Soln-V4a: Here is a bijection $\mathbf{H}: A^{P \times Q} \hookrightarrow [A^P]^Q$. Let $\mathbf{H}(f) := \widehat{f}$, where $\widehat{f}(q)(p) := f(p, q)$. Or in one swell foop,

$$\mathbf{H}(f) := [q \mapsto [p \mapsto f(p, q)]].$$

b Below, I need some two 2-element sets; let's take $\{\mathbf{1}, \mathbf{2}\}$ and $\{\heartsuit, \clubsuit\}$. Use “ 2^B ” to abbreviate $\{\heartsuit, \clubsuit\}^B$; the set of maps from $B \rightarrow \{\heartsuit, \clubsuit\}$.

I am given bijections

$$\mathcal{P}: \mathbb{N} \hookrightarrow \mathbb{N} \times \{\mathbf{1}, \mathbf{2}\} \quad \text{and} \quad \mathcal{Q}: \mathbb{R} \hookrightarrow 2^{\mathbb{N}},$$

and the inverse-fnc $\mathcal{G} := \mathcal{Q}^{-1}$ mapping $2^{\mathbb{N}} \hookrightarrow \mathbb{R}$. **ITOf** $\mathcal{P}, \mathcal{Q}, \mathcal{G}$, I want to define these bijections:

$$\dagger 1: \quad \beta: \mathbb{R}^2 \hookrightarrow 2^{\mathbb{N}} \times 2^{\mathbb{N}}.$$

$$\dagger 2: \quad \gamma: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \hookrightarrow 2^{\mathbb{N} \times \{\mathbf{1}, \mathbf{2}\}}.$$

$$\dagger 3: \quad \delta: 2^{\mathbb{N} \times \{\mathbf{1}, \mathbf{2}\}} \hookrightarrow 2^{\mathbb{N}}.$$

I'll then combine them to produce a bijection

$$\dagger 4: \quad \varepsilon: \mathbb{R}^2 \hookrightarrow \mathbb{R}.$$

Soln-V4b: Well, \mathbb{R}^2 is $\mathbb{R} \times \mathbb{R}$, so it works to define

$$\dagger 1: \quad \beta(x_1, x_2) := (\mathcal{Q}(x_1), \mathcal{Q}(x_2)).$$

Using f for a general element of $2^{\mathbb{N}}$, we can write (f_1, f_2) for a gen-elt of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$. Employing $\mathbf{j} \in \{\mathbf{1}, \mathbf{2}\}$ as an index variable, let

$$\dagger 2: \quad \gamma(f_1, f_2) := [(n, \mathbf{j}) \mapsto f_{\mathbf{j}}(n)].$$

For m a natnum, the value $\mathcal{P}(m)$ is a natnum-index pair. Write this pair as $(m_{\mathbb{N}}, m_{\mathbf{Idx}})$. For example:

When $\mathcal{P}(5177) = (38, 2)$, then $5177_{\mathbb{N}} = 38$ and $5177_{\mathbf{Idx}} = 2$.

Use h for a general fnc in $2^{\mathbb{N} \times \{\mathbf{1}, \mathbf{2}\}}$. Let

$$\dagger 3: \quad \begin{aligned} \delta(h) &:= [m \mapsto h(m_{\mathbb{N}}, m_{\mathbf{Idx}})] \\ &\stackrel{\text{note}}{=} h \circ \mathcal{P}. \end{aligned}$$

This δ is indeed a bijection $2^{\mathbb{N} \times \{\mathbf{1}, \mathbf{2}\}} \hookrightarrow 2^{\mathbb{N}}$.

Composing functions. Here is $\gamma \circ \beta$ written out in full:

$$\gamma(\beta(x_1, x_2)) = [(n, \mathbf{j}) \mapsto \mathcal{Q}(x_{\mathbf{j}})(n)].$$

So $\delta \circ \gamma \circ \beta$ maps (x_1, x_2) to $[m \mapsto \mathcal{Q}(x_{m_{\mathbf{Idx}}})(m_{\mathbb{N}})]$.

Defining $\varepsilon := \mathcal{G} \circ \delta \circ \gamma \circ \beta$ produces

$$\varepsilon(x_1, x_2) = \mathcal{G}(m \mapsto \mathcal{Q}(x_{m_{\mathbf{Idx}}})(m_{\mathbb{N}})).$$

Intersection Problems

[JK: Tuesday, 12Jun2012] T.fol question arose when trying to figure out why the countable Marriage-lemma didn't generalize in the obvious way to higher cardinalities.

Say that a set S is *sequentially disappearing* (*SD*) if *there exists* a sequence of sets

$$S \supset D_1 \supset D_2 \supset \dots, \quad \text{with} \quad [\bigcap_{j=1}^{\infty} D_j] = \emptyset$$

and each $|D_j| = |S|$.

Sierpinski's question

Consider a space X . Suppose P is a cardinality property such as “finite”, “infinite”, or “co-finite”.

Define a corresponding property of a family \mathcal{C} of subsets of X . Say that \mathcal{C} is P -paired (on X) if whenever $A, B \in \mathcal{C}$ are distinct, then $A \cap B$ has property P .

1: Sierpinski's query. Suppose \mathcal{C} is a finite-paired family on \mathbb{N} . Can \mathcal{C} have the cardinality of \mathbb{R} ? \diamond

Pf of Yes (Sierpinski). Let $\varphi: \mathbb{Q} \leftrightarrow \mathbb{N}$ be a bijection. Use the Axiom of Choice to pick, for each $x \in \mathbb{R}$, a sequence $(q_n)_{n=1}^{\infty}$ of rationals which converges to x . Define A_x to be $\{\varphi(q_n)\}_{n=1}^{\infty}$. Evidently if $x \neq y$ then $A_x \cap A_y$ is finite. Thus $\mathcal{C} := \{A_x\}_{x \in \mathbb{R}}$ is finite-paired. \diamond

Proof of Yes (Smorodinsky). Label the squares of the $\mathbb{Z} \times \mathbb{Z}$ lattice with \mathbb{N} , bijectively; these squares are closed on the bottom and left, and open on the top and right. For each angle θ , let A_{θ} consist of the numbers of all squares through which passes the ray (from the origin) at angle θ . \diamond

2: Meir's question. Suppose family $\mathcal{C} \subset \mathcal{P}(\mathbb{N})$ is [at most 8]-paired. Can \mathcal{C} be uncountable? \diamond

NB. For both proofs below: WLOG generality, \mathcal{C} contains only infinite sets. (There are but countably many finite sets of naturals.) \square

Pf of No (jk). Fix a cardinality-8 subset $F \subset \mathbb{N}$. Let \mathcal{D}_F consist of those members $A \in \mathcal{C}$ such that $A \supset F$. Imagine deleting F from \mathbb{N} . This does not identify any two members of \mathcal{D}_F , but now the members of \mathcal{D}_F are pairwise disjoint. And now it is evident that \mathcal{D}_F is countable, since its elements union-disjointly to a countable set.

Finally, since \mathcal{C} is the countable union $\bigcup_F \mathcal{D}_F$, as F ranges over all cardinality-8 sets, \mathcal{C} is seen to be countable. (Note that $\bigcup_F \mathcal{D}_F$ need not be a disjoint union.) \diamond

Proof of No (Kyle Duffy). Define a fnc $f: \mathcal{C} \rightarrow \mathbb{N}^{*9}$ by $f(A)$ is the 9-tuple of the 9 smallest elements of A , in order. This f is injective, thanks to the [at most 8]-paired property. \diamond

3: Someone's question. Let \mathcal{P}_{∞} be the collection of all infinite subsets of \mathbb{N} . Does there exist a map $f: \mathcal{P}_{\infty} \rightarrow \mathbb{N}$ such that for each $y \in \mathbb{N}$, the pre-image $f^{-1}(y)$ has this property:

\dagger : Each finitely many members of $f^{-1}(y)$ has infinite-intersection. \diamond

Pf of No (jk). Even weakening (\dagger) to

\ddagger : Each two elts of $f^{-1}(y)$ has ∞ -intersection

does not permit such an f . For using the answer to (1), let \mathcal{C} be a finite-paired family on \mathbb{N} , with $\mathcal{C} \asymp \mathbb{R}$. Then (\ddagger) forces restriction $f|_{\mathcal{C}}$ to be injective. So $\mathcal{C} \preccurlyeq \text{Range}(f)$, i.e., $\mathbb{R} \preccurlyeq \mathbb{N}$; $\mathbb{R} \not\asymp \mathbb{N}$; $\mathbb{R} \not\asymp \mathbb{N}$. \diamond

§A Ordinals and Cardinals

Ordinal arithmetic

One defn of *ordinal* is a well-order type. That is, a class of well-ordered sets which are order-isomorphic to each other.

As for the limit case, let β range over all ordinals less than κ . Fix an $\alpha < \kappa$ and compute
Unfinished: as of 20Dec2022

$$\kappa \asymp \sup_{\beta} \beta \asymp \sup_{\beta} 2\beta \geq 2\alpha.$$

Taking a supremum over α ◆

Now use transfinite induction.

Successor case, $\alpha = \beta + 1$:

This β must be infinite and so

$$\alpha \asymp \beta \asymp \omega \times \beta \asymp \omega \times \alpha.$$

α is a limit ordinal:

When $\alpha = \beta + 1$, then β is infinite and

$$\alpha \asymp \omega \times \alpha.$$

Proof of (d). Note $\kappa^1 \leq \kappa^\beta \leq [2^\beta]^\beta = 2^{\beta\beta}$ which, since β is infinite, equals 2^β . Thus $\kappa \leq \kappa^\beta \leq \kappa$. ◆

Filename: Problems/SetTheory/set-theory^.latex
As of: Sunday 06Sep2015. Typeset: 20Dec2022 at 12:22.

Cardinal arithmetic

First, a lemma on sets. Use \asymp to mean “bijective with”, when applied to sets, and mean “equal cardinality”, when applied to cardinals.

4: Theorem. Here ν, β, κ are cardinals.

a: A bijection from $[S^P]^A$ to $S^{A \times P}$ is $f \mapsto \hat{f}$ where $\hat{f}(a, p) := [f(a)](p)$.

b: If at least one of β and κ is infinite, then

$$\beta + \kappa \asymp \text{Max}(\beta, \kappa).$$

c: If neither β nor κ is zero, and at least one is infinite, then

$$\beta \times \kappa \asymp \text{Max}(\beta, \kappa).$$

d: If β is infinite and $2 \asymp \kappa \asymp 2^\beta$, then $\kappa^\beta \asymp 2^\beta$. ◊

Pf of (b). WLOG $\beta \leq \kappa$. Note $\kappa \asymp \beta + \kappa \asymp 2\kappa$. Schröder-Bernstein will finish the argument if we can establish $2\kappa \asymp \kappa$, once κ is infinite. Recall that $\omega + 1 \asymp \omega$ and, since ω is an initial segment of every infinite ordinal,

$$\sigma \text{ infinite} \implies \sigma + 1 \asymp \sigma.$$

Cantor diagonalization proves $2\kappa \asymp \kappa$, when $\kappa \asymp \omega$. The successor case $\kappa = \sigma + 1$ is simply the computation

$$2\kappa \asymp 2\sigma + 2 \asymp \sigma + 2 \asymp \sigma + 1 \asymp \kappa.$$